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Glassy dynamics in granular compaction: Sand on random graphs
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We discuss the use of a ferromagnetic spin model on a random graph to model granular compaction. A
multispin interaction is used to capture the competition between local and global satisfaction of constraints
characteristic for geometric frustration. We define an athermal dynamics designed to model repeated taps of a
given strength. Amplitude cycling and the effect of permanently constraining a subset of the spins at a given
amplitude is discussed. Finally we check the validity of Edwards’s hypothesis for the athermal tapping
dynamics.
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I. INTRODUCTION

Granular matter and glasses share a number
properties—such as off-equilibrium dynamics, aging, a
hysteresis—and analogies between them have long@1# been
pointed out. However, it was not until the seminal expe
ments of Nowaket al. @2# on granular compaction were ca
ried out that serious attempts were made to quantify s
analogies. The experiments focus on the compaction be
ior of a large number of grains subject to repeated tapp
and have become a paradigm for subsequent theore
models.

These models fall into roughly two classes: lattice-ba
models@3–5# in a finite-dimensional space~which, in gen-
eral, do not admit analytic solutions! or mean-field models
@6,7# ~where each site interacts with a large number of ot
sites!. In this paper we discuss how models on rand
graphs may be used to describe aspects of the behavi
granular matter, which depend on thefinite connectivity of
the ~disordered! grains, while still remaining analytically
accessible.

The aim of this paper is twofold. We discuss and motiv
a simple spin model defined on a random graph introdu
as a model of granular compaction in@8#. In this model the
random close packing density reached asymptotically aft
large number of taps is identified with a dynamic phase tr
sition. Second, we discuss an athermal dynamics@8,9#, con-
sisting of alternating periods of thermal dynamics at a cer
temperature, and quenches at zero temperature which
the system to a metastable state.

Next, the compaction curve of the tapping process will
discussed and its two main features, the single particle re
ation threshold and the random close packing density~dy-
namical transition!, will be analyzed in detail. We then
present results of numerical simulations of tappin
amplitude cycling with a discussion of hysteresis and
asymptotic state of the model. Finally we investigate the s
tistical mechanics of the blocked configurations and disc
the validity of the so-called Edwards measure@6#.

II. RANDOM GRAPH MODELS AND GRANULAR MEDIA

A random graph@10# consists of a set of nodes and bond
with the bonds connecting each node at random to a fi
1063-651X/2002/65~3!/031305~9!/$20.00 65 0313
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number of other nodes, thus, from the point of view of co
nectivity, appearing as a finite-dimensional structure. E
bond may link up two sites~a graph! or more ~a so-called
hypergraph!.

Formally, a random graph ofN nodes and average con
nectivity c is constructed by considering allN(N21)/2 pos-
sible bonds between the nodes and placing a bond on ea
them with probabilityc/N. In other words the connectivity
matrix Ci j is sparse and has entries 1~bond present! and 0
~no bond!, which are independent and identically distribut
variables with probabilityc/N and 12c/N, respectively. The
resulting distribution of local connectivities is Poissoni
with mean and variancec. The resulting structure islocally
treelike but has loops of length of order ln(N). Although
there is no geometric concept of distance~in a finite-
dimensional space!, a chemical distance may be defined
determining the minimum number of steps it takes to
from one given point to another.

In a similar fashion, graphs—strictly speakin
hypergraphs—with plaquettes connecting three or m
nodes each may be constructed. ChoosingCi jk51(0) ran-
domly with probability 2c/N2 (122c/N2) results in a ran-
dom three-node hypergraph, where the number of plaque
connected to a site is distributed with a Poisson distribut
of averagec. An illustration of a part of such a graph i
shown in Fig. 1.

FIG. 1. A part of a random graph~strictly speaking a hyper-
graph! with triplets of sites forming plaquettes illustrating its loc
treelike nature~no planarity or geometric sense of distance are i
plied!.
©2002 The American Physical Society05-1
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Spin models on random graphs have been investigated
almost 20 years@11#, since they may be considered as bei
halfway between infinite-connectivity models and finit
dimensional models, having to a certain extent the anal
accessibility of the former within the framework of th
mean-field theory, and yet the finite connectivity of the lat
too. Interest in these models has intensified lately since t
occur in the context of random combinatorial optimizati
problems@12#, and inroads have been made towards th
analytic treatment beyond replica symmetry@13,14#.

In the context of modeling the compaction of granu
matter, random graphs are the simplest structures with
nite number of neighbors. The finite connectivity is a k
property, which goes beyond the simple fact that the gra
in a granulate are in contact with a finite number of neig
boring grains. For instance, kinetic constraints, which ar
prominent feature in many models of granular behavior@15#,
can only be meaningfully defined in models with a fin
connectivity. Furthermore, cascades found experiment
during the compaction process may be explained by inte
tions between a finite number of neighboring sites, wh
one local rearrangement sets off another one in its neigh
hood and so on@8#.

Another reason for the use of random graphs lies in
disordered structure of granular matter even at high densi
A random graph is the simplest object where a neighborh
of each site may be defined, but has no global symmet
like a regular lattice. Additionally, the locally fluctuatin
connectivity may be thought of as modeling the range
coordination numbers of the grains@16#.

III. THE MODEL

In the following we consider a three-spin Hamiltonian
a random hypergraph whereN binary spinsSi561 interact
in triplets,

H52rN52 (
i , j ,k

Ci jkSiSjSk , ~1!

where the variableCi jk51 with i , j ,k denotes the pres
ence of a plaquette connecting sitesi , j ,k and Ci jk50 de-
notes its absence.

This Hamiltonian has recently been studied on a rand
graph in the context of satisfiability problems in combina
rial optimization @17#, on a random graph of fixed conne
tivity @14#, and on a two-dimensional triangular lattic
@18,19#. It has a trivial ground state where all spins point
and all plaquettes are in the configuration111 giving a
contribution of21 to the energy. Yet, locally, plaquettes
the type 221,212,122 ~satisfied plaquettes! also
give the same contribution. This results in a competition
tween local and global satisfaction of the plaquettes: Loc
any of the satisfied plaquettes are equivalent~thus favoring a
paramagnetic state!, yet globally a ferromagnetic state ma
be favored, since there are few configurations satisfying
plaquettes, where four configurations111,221,21
2,122 occur in equal proportions. Forc.cc;2.75 @17#,
ground states have a positive magnetization, which may
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interpreted as the onset long-range order and as being
possibly crystalline@20,21# state of the granular medium.

However two spin flips are required to take a give
plaquette from one satisfied configuration to another. Thus
energy barrier has to be crossed in any intermediate
between two satisfied configurations as illustrated in Fig
In the context of granular matter, this mechanism aims
model the situation where compaction follows a tempor
dilation; for example, a grain could form an unstab
~‘‘loose’’ ! bridge with other grains before it collapses into
available void beneath the latter. This mechanism, by wh
an energy barrier has to be crossed in going from one m
stable state to another, has recently been argued to b
important ingredient in models of granular compaction@21#.

The crucial feature of the model responsible for the sl
dynamics, however, is the degeneracy of the four configu
tions of plaquettes withsisjsk51 resulting in competition
between satisfying plaquetteslocally and globally. In the
former case, all states with even parity may be used, res
ing in a large entropy and in the latter, only the111 state
may be used. A dynamics based on local quantities will th
fail to find the magnetized configurations of low energy.

This mechanism has a suggestive analogy in the con
of geometrical frustration of granular matter if we think
plaquettes as granular clusters. When grains are shaken,
rearrange locally, but locally dense configurations can
mutually incompatible. Voids may appear between dens
packed clusters due to mutually incompatible grain orien
tions between neighboring clusters. The process of comp
tion in granular media consists of a competition between
compaction oflocal clusters and the minimization of void
globally.

A. Modeling tapping

There have been many kinds of dynamical schemes
model the behavior of granular media under tapping. A
curring theme is the alternation of periods of randomly p
turbing the system and periods in which the system is
lowed to settle into a mechanically stable state. These h
included nonsequential Monte Carlo reorganization sche
@22#, the ratio of upward to downward mobility of particle
on a lattice@4#, or variable rates of absorption and desorpti
@23#.

FIG. 2. The phase space of three spins connected by a s
plaquette. Configurations of energy21 ~the plaquette is satisfied!
are indicated by a black dot, those of energy11 ~the plaquette is
unsatisfied! are indicated by a white dot.
5-2
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GLASSY DYNAMICS IN GRANULAR COMPACTION: . . . PHYSICAL REVIEW E 65 031305
In the same spirit, we treat each tap as consisting of
phases. First, during thedilation phase, particles are accele
ated and are relatively free to move with respect to e
other for some time. In the second phase, thequenchphase,
particles relax until a mechanically stable configuration
reached.

As an initial condition we use a configuration obtained
quenching the system from a configuration where the sp
are chosen independently to be61 with equal probabilities.
To mimic the action of tapping, we choose the followin
dynamics of the spins. The dilation phase is modeled b
single sequential Monte Carlo sweep of the system at a
mensionless temperatureT: A site i is chosen at random an
flipped with probability 1 if its spinsi is antiparallel to its
local field hi , with probability exp(2hi /T) if it is not, and
with probability 0.5 if hi50. This procedure is repeatedN
times. Sites with a large absolute value of the local fieldhi
thus have a low probability of flipping into the directio
against the field. Such spins may be thought of as be
highly constrained by their neighbors. This differs somew
from the dilation-phase model in@8,9#, where a certain frac-
tion of spins is flipped regardless of the value of their lo
field. We claim that our present dynamics is rather m
realistic in the context of vibrated granular media; if grai
are densely packed~strongly ‘‘bonded’’ to their neighbors!,
they are less likely to be displaced during the dilation ph
of vibration than grains that are loosely packed.

The quenchphase is modeled by a quench of the syst
at T50, which lasts until the system has reached a bloc
configuration, i.e., each sitei hassi5sgn(hi) or hi50. Thus
at the end of each tap the system will be in a blocked c
figuration.

This dynamics may be thought of as a series of quenc
where the initial condition for each quench is obtained
perturbing the result of the previous quench. It is a simplifi
version, suitable for spin models, of the tapping dynam
used in cooperative Monte Carlo simulations of sphere sh
ing @22#. In the context of combinatorial optimization it co
responds to the class of random-restart algorithms~e.g.,
@24#!, which include some of the most efficient algorithm
for the solution of optimization problems.

IV. THE COMPACTION CURVE

An example of a single run of the system is shown in F
3. We can identify three regimes of the dynamics: first
very fast increase of the density up to a densityr0 during the
first tap, then a slow compaction regime that takes the d
sity up tor` , and finally an asymptotic regime.

In the first regime, all sites orient their spins in paral
with the local field acting on that site. This quench cor
sponds to afast dynamics wherebysingle particles locally
find the orientation maximizing the density leading to t
density,r0 @25#. In @8# this density was termed thesingle-
particle relaxation threshold~SPRT!.

The second phase of the dynamics consists of remo
some of the remaining frustrated plaquettes and gives a l
rithmically slow compaction@2,5# leading from a densityr0
to r` . The resulting compaction curve may be fitted to t
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well-known logarithmic law@2#

r~ t !5r`2~r`2r0!/@111/D ln~11t/t!#, ~2!

which may also be written in the simple form 11t(r)/t
5exp@D(r2r0 /r`2r)#, implying that the dynamics become
slow ~logarithmic! as soon as the density reachesr0. In this
regime, most spins have a nonzero local field acting on th
which keeps them fixed in a certain direction@26#. The cor-
responding grains are firmly held in place by their neighbo
However, during the dilation phase some of them have th
orientation altered, altering the local fields acting on th
neighboring grains by a finite amount, which could cau
them to flip in turn. The dynamics of the grains with ze
local field may alter the local field of their neighbors, an
induce a previously blocked grain to flip. In this way acas-
cade@8# of flips may ensue.

With increasing density, free-energy barriers rise up, ca
ing the dynamics to slow down according to Eq.~2!. The
point where the height of these barriers scales with the s
tem size marks abreaking of the ergodicity of the dynamic,
a breakup of the phase space into a large number~scaling
exponentially with the system size! of disconnected clusters
and a saturation of the compaction curve. For small driv
amplitudes, we thus identify the asymptotic density~random
close packing! with a dynamical phase transition@7,27–29#.
In the following we will examine in detail the SPRT and th
dynamical transition.

A. The single-particle relaxation threshold

The first tap is modeled as a quench at zero temperat
At the end of this, each site is connected to more~or as

FIG. 3. Compaction curve at connectivityc53 for a system of
104 spins withT50.4. The data stem from a single run and the
~smooth solid line! follows Eq. ~2! with parametersr`50.989,r0

50.843,D54.716, andt552.46. The long-dashed line~top! indi-
cates the approximate density 0.954 at which the dynamical tra
tion occurs, the long-dashed line~bottom! indicates the approximate
density 0.835 at which the fast dynamics stops, the single-par
relaxation threshold.
5-3
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JOHANNES BERG AND ANITA MEHTA PHYSICAL REVIEW E65 031305
many! unfrustrated plaquettes than frustrated ones. The
of any site where this is not the case would flip under
zero-temperature dynamics, turning frustrated plaquettes
unfrustrated ones. The question of the density reached af
quench from random starting conditions is highly nontrivi
since its resolution involves the basins of attraction of
zero-temperature dynamics.

The problem may be illustrated by considering a sin
site i connected to 2ki other sites and subject to the loc
field hi51/2( jkCi jksjsk . For random initial conditions, the
values ofl i5hisi are binomially distributed with a probabil
ity of C(ki2 l i )/2

ki (1/2)ki if ki2 l i is even and zero if it is odd. If

l i,0, zero-temperature dynamics will flip this spin, turnl i to
2 l i , and turn (ki6 l i)/2 satisfied~dissatisfied! plaquettes
connected to it into dissatisfied~satisfied! ones. This will
cause thel j of ki6 l i neighboring sites to decrease~increase!
by 2. This dynamics stops when all sites havel>0, giving
r051/(3N)( i l i .

This process is made complicated by correlations betw
the local fields of neighboring sites. Neglecting these co
lations we arrive at a simple population model ofN units,
each with a Poisson distributed value ofki and a value ofl i
distributed according to the initial binomial distribution. A
each step, a randomly chosen element with negativel i has its
l i inverted, andki6 l i randomly chosen elements have th
values of l decreased~increased! by 2 until l i>0; i . This
simplistic model works surprisingly well at low values of th
connectivityc ~with an error of about 10% up toc56), but
obviously fails completely at large values ofc or in fully
connected models.

In principle, the differential equations describing th
population dynamics could be solved analytically. Here
simply report the results for running the population dynam
numerically withN5104 at c53. We obtainr050.835(1),
which is shown as a dotted line in Fig. 3. Note that th
density is found to be much higher than that of a typi
‘‘blocked’’ configuration withl i>0; i , which is found to be
0.49~see Sec. VI and also the discussion in@30#!. Despite the
fact that these ‘‘blocked’’ configurations are exponentia
dominant, the total basin of attraction of the configurations
r0 dominates the space of random initial conditions.

Another significant feature of this regime is that a fracti
of spins is left with local fields exactly equal to zero, whic
thus keep changing orientation@26#. These spins may be
compared to so-called rattlers@31#, i.e., grains that chang
their orientationwithin well-defined clusters@16#. These will
be used as a tool to probe the statistics of blocked confi
rations in Sec. VI.

To conclude this section, the SPRT density appears as
density that is reached dynamically by putting each part
into its locally optimal configuration, as has also been fou
in lattice-based models@5# and simulations of sphere pack
ings @20,21#, which show both fast and slow dynamics.

B. The dynamic transition

The dynamical transition is marked by the appearance
an exponential number of valleys in the free-energy la
scape and thus a breaking of ergodicity@27–29#. In the event
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that the dynamics is thermal, equilibration times diverge
the temperature corresponding to the dynamic transit
Cooling the system down gradually from high temperatu
will also result in the system falling out of equilibrium at th
dynamical transition temperature. Furthermore, the ene
will get stuck at the energy at which the transition occurs

Since this phenomenon is the result of the drastic cha
in the geometry of phase space, it is not surprising that
also find it in the athermal dynamics defined in Sec. III
Either gradually decreasing the tapping amplitudeT or tap-
ping at a low amplitude for a long time will get the system
approach the density~energy! at which the dynamical transi
tion occurs. We thus identify the random close packing lim
in this model with a dynamical phase transition.

To support this picture, we give a simple approximati
for the densityr` at which the dynamical transition occur
Using the replica trick, lnZ5lim

n→0
]nZn @32#, and standard

manipulations, we obtain for the average of thenth power of
the partition function of the Hamiltonian~1! averaged over
the ensemble of random graphs,

^^Zn&&5)
sW

E
0

1

dc~sW !expH 2NS (
sW

c~sW !ln@c~sW !# D 1c/3

2c/3 (
vW ,tW ,sW

c~vW !c~tW !c~sW !expFb(
a

vatasaG D ,

~3!

where c(sW ) is an order parameter function defined on t
domain of the 2n vectorssa561.

The general replica-symmetric ansatz is incorporated

c~sW !5E dhP~h!
ebh(sa

@2 cosh~bH !#n
.

TakingP(h)5d(h) gives the paramagnetic solution, valid
the high-temperature phase, resulting in a free energyf (b),

b f ~b!52c/3 ln~coshb!1 ln~2!. ~4!

To determine the temperature at which the dynamics tra
tion occurs, a replica-symmetry breaking~RSB! ansatz is
required @27,28#. A simple variational ansatz@17,33,34#
implementing one step of RSB given by

c~sW !5 )
b51

n/m H E dhbGD~hb!ebhb (
a5(b21)m11

bm

sa

E dhbGD~hb!@2 cosh~bhb!#m
J , ~5!

whereGD(h) is a Gaussian with zero mean and varianceD,
gives the free energy subject to the variational ansatzf (b)
5ED,mf 1(b,D,m) with
5-4
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GLASSY DYNAMICS IN GRANULAR COMPACTION: . . . PHYSICAL REVIEW E 65 031305
b f 1~b,D,m!

5

E Dz~bADz!@2 cosh~bADz!#m21sinh~bADz!

E Dz@2 cosh~bADz!#m

2
12c

m
lnS E Dz@2 cosh~bADz!#mD

2c/~3m!lnS E E E Dz1Dz2Dz3@8 cosh~bADz1!

3cosh~bADz2!cosh~bADz3!cosh~b!

18 sinh~bADz1!sinh~bADz2!sinh~bADz3!sinh~b!#mD ,

whereD(z) denotes the Gaussian measure with zero m
and variance 1. The dynamical transition occurs at a te
perature@35#, where]@b f (b,D,m)#/]m evaluated atm51
develops a minimum at finiteD @27,28#. The corresponding
density is marked with a horizontal line in Fig. 3 and agre
well with the asymptotic density reached by the tapping
namics. However, this asympotitic density is not the high
density that can be reached without putting the system
an ordered configuration, however, it is the highest such d
sity that is reached by a local dynamics.

V. AMPLITUDE CYCLING AND THE STATIONARY
STATE

The tapping dynamics introduced in Sec. III A may
used to increase and decrease the tapping amplitude su
sively. Thisamplitude cyclingis an important protocol in rea
and numerical experiments. The ramp rate@2# is defined as
the ratiod(A)/t, wheret is the number of taps spent at ea
amplitudeA, which is changed with an increment ofd(A)
after each series of taps.

The results of increasingT continuously from 0 to 2 and
back again at two rates 1024 and 1025 per tap is shown in
Fig. 4; here, clearlyt51, and the ramp rate is in fact jus
d(A). As expected, both at high and low cycling rates, t
density first reaches the SPRTr0, then increases with in
creasing amplitude and time, until it decreases again at l
values of T. As the amplitude is decreased, the syst
reachesr` . The part of the curve whereT is increased for
the first time is conventionally@2# called the irreversible
branch, while the reversible branchrefers to the section
whereT is subsequently decreased and then increased a

However, the similarity of this simple picture with exper
mental results of@2# is deceptive. From Sec. IV B we know
that at fixed, finite but low amplitudes the model eventua
reachesr` . As a result, the branches of increasing amplitu
at low T do not coincide for high and low rates of change
the amplitude. At low rates of change, the density as a fu
tion of T is higher than at high rates of change. This irreve
ibility of the so-called reversible branch is thus due to t
system not reaching a steady state at each value of the
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plitude. This behavior has also been observed in other m
els @5,36#.

In fact, in the limit of infinitely slow increments ofT, the
irreversible branch would disappear, andr would become a
single-valued function ofT. This would be in direct contra-
diction with the experimental results of@2#, where at low
amplitudes the steady-state densitycannotbe reached with a
sufficiently large number of taps, at least within experime
tally realizable times.

This phenomenon may be thought of as follows: So
particles in a granular assembly are so strongly constra
that they will never~at least within experimentally realizabl
times! be moved by taps of a sufficiently low amplitude.
the dynamics of our model described thus far, however, s
with a high local field may be flipped at any finite value ofT
with a correspondinglysmall but finiteprobability, leading
the system eventually tor` .

To model this effect, it is not sufficient to prevent spin
with a large value of the local magnetic field from bein
flipped since the dynamics of their neighbors will eventua
lead to a reduction of their field, freeing the previously co
strained spins. Instead, we assign to each sitei a real number
r i between 0 and 1, and during the dilation phase of
dynamics, we only flip spins at sitesi with r i,T. During the
‘‘quench’’ phase any spin may be flipped.

In the language of grains,r i represents the strength wit
which a grain is constrained by its neighbors; sitesi such that
r i.T will be permanently resistant to being displaced at
intensity of vibrationT. In a real system, these threshol
would be determined by details of the intergrain force n
work.

The aim of this modification is to check if the scenario
Sec. IV B survives, since, in principle, it is possible that
new and lower value ofr` emerges after the amplitude ha
been increased and decreased: At high shaking amplitu
frustrated plaquettes~clusters! might be generated, which

FIG. 4. The results of ramping the amplitude up and down ag
at two different rates, 1024 ~solid line! per tap and 1025 ~dashed
line!. The lower rate results in a steeper increase of the den
during the increase of the amplitude~lower branches of solid and
dashed lines!.
5-5
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JOHANNES BERG AND ANITA MEHTA PHYSICAL REVIEW E65 031305
cannot be eliminated at low values of the amplitude, sim
to the scenario proposed in@37#.

Figure 5, where the cycling of Fig. 4 is repeated with t
constraining of spins, shows thatr` remains unaltered. In
fact, Figs. 4 and 5 look remarkably similar. The effect
constraining some spins at low values ofT emerges when the
ramp rate is decreased substantially, in particular, by all
ing the spins to ‘‘equilibrate’’ at each amplitude by choosi
a larget. In Fig. 6 we thus increase the shaking amplitudeT
from 0.2 to 2 in steps of 0.2 after waiting fort5107 taps at
each amplitude step. This makes sure that a steady sta
the density has been reached at each amplitude. We fin
this case, that at low amplitudes the immobile spins cause
system to reach a steady state with a density lower thanr` .

FIG. 5. Results of ramping the amplitude up and down again
two different rates, 1024 ~solid line! per tap and 1025 ~dashed line!.
This time a subset of the sites depending on the amplitude is
strained ‘‘by hand’’ and does not flip.

FIG. 6. The asymptotic density for tapping amplitudes rang
from T50.2 toT52 in steps of 0.2. The density measured after 17

taps at each amplitude and convergence to a steady state each
was checked.
03130
r

f

-

of
in

he

Despite the fact that in@5,36# very low ramp rates were use
with large ‘‘waiting times’’ t at each tap, this behavior wa
not observed; rather the results of all these simulations
plied that the asymptotic densityr` would always be ap-
proached in the limit of sufficiently low ramp rates.

One may view the~random! configuration of the immo-
bile spins at each value ofT as an additional quenched dis
order and their effect on neighboring mobile spins as a r
dom local field. Presumably the dynamics in the subspac
the phase space corresponding to the mobile spins~with
fixed local fields due to the immobile spins! undergoes a
dynamic transition as the corresponding steady-state den
is reached. The result thatr` is reached decreasingT from
above even though a finite fraction of spins has been r
dered immobile at low temperatures, is quite remarkable
is a testament to the paramagnetic nature of the mode
densities belowr` . In a glassy state, one would expect t
configurations of spins reached at high values ofT and sub-
sequently frozen to alter the behavior of the system at lo
values ofT. As we are above the dynamical transition, t
system manages far better to adapt the mobile spins to
configuration of the immobile spins at each temperature t
it would in a glassy phase. However, it needs prolonged
posure to tapping in order to ‘‘feel’’ the effect of the ran
domly ‘‘pinned’’ spins.

These results demonstrate a rather fundamental differe
between thermal excitations in glassy systems and intens
of mechanical vibration in granular media. In the glas
phase of a system, one would expect the configuration
spins reached at high values of temperature and subsequ
frozen to alter the behavior of the system at lower values
temperature. In granular media, however, it is important
let the systemreach the asymptotic densityat each value of
the shaking intensityT, in order to even begin to observe th
hysteresis that must result when mobile grains become
of immobile clusters@38#, generating a type of ‘‘quenched
disorder at least at low vibrational intensities. The differen
between Figs. 5 and 6 clearly illustrates this. Given that
experiments@2# were done in such a way that the system w
allowed to reach the asymptotic density at each value of
tapping amplitude, our results indicate that ‘‘jamming’’@39#
of grains caused by the force network might be respons
for the fact thatr` is not reached by tapping solely at lo
amplitudes.

VI. BLOCKED CONFIGURATIONS
AND THE EDWARDS MEASURE

In this section we focus on the statistical mechanics of
blocked configurations referred to earlier, and use these
sults to address the question of ergodicity of the tapp
dynamics. After each tap according to Sec. III A, the syst
is in a blocked configuration, i.e., each sitei has si
5sgn(hi) or hi50. The Edwards hypothesis@40# states that
in the steady state along the reversible branch, all mech
cally stable configurations at a given density are equipro
ble. We test this hypothesis for the tapping dynamics of S
III A.

We begin by calculating the average entropy of block
configurations at a given density. In principle, we wou
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need to average the logarithm of the number of block
states over the ensemble of random graphs; this so-ca
quenched average can be expected to be self-averaging
simplicity, we restrict ourselves to the so-called annealed
erage and compute

sannealed~r!5
1

N
ln^^N~r!&&>squenched~r!5

1

N
^^ ln@N~r!#&&,

~6!

which gives an upper bound to the quenched average.
number of blocked configurationsN(r) may be written eas-
ily as

N~r!5)
i

F (
si561

(
hi52`

`

dS hi ;1/2(
j ,k

Ci jksjskD
3Q~hisi !GdS r21/@3N#(

i
hisi D , ~7!

where the Kronecker deltad(x;y)5 if x5y and 0 otherwise,
and Q(x) denotes a discrete Heaviside step function w
Q(x)51 if x>0 and 0 otherwise. After using integral rep
resentations for the Kronecker deltas and standard manip
tions, one easily obtains

sannealed
blocked~r!5Ea,b,bF2br18c/3~a31b3!2c/3

1 lnS 2(
h51

`

~eb/3a/b!hI h~4cab!

12I 0~4cab!D G , ~8!

whereI h(x) denotes the modified Bessel function of the fi
kind of orderh andE denotes the extremum over the ord
parameter. In Fig. 7, the entropy of blocked configuratio
sannealed(r), is shown along with the paramagnetic entro
given by Eq.~11! below, which is derived by including term
with negativesihi .

These expressions were evaluated forc53 and the results
are shown in Fig. 7. From this data, the lowest density
which blocked configurations occur@sannealed(r)50# is
found to ber50.09, and the density of a randomly chos
blocked configuration@the maximum ofsannealed(r)) is r
50.49.

Similarly, one may calculate the fractiong of connected
sites with zero local magnetic field in a blocked configu
tion. As we will argue below, this is a useful quantity to te
the Edwards hypothesis. From Eq.~8! one obtains

g5
I 0~4cab!

(
h51

`

~eb/3a/b!hI h~4cab!1I 0~4cab!

2e2c, ~9!
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where for any given value ofr, the values ofb and of the
order parametersa andb are given by the extremization con
dition in Eq.~8!, and where we have subtracted a trivial ter
e2c corresponding to the fraction of unconnected sites.

Analogously, the fraction of connected sites with zero
cal magnetic field at a given density~without the blocking
condition! is given by

g85
I 0~4cab!

(
h51

`

@~eb/3a/b!h1~e2b/3b/a!h#I h~4cab!1I 0~4cab!

2e2c, ~10!

where the values ofa,b, andb follow from extremizing over
sannealed,

sannealed~r!5Ea,b,bH 2br18c/3~a31b3!2c/3

1 lnS 2(
h51

`

@~eb/3a/b!h

1~e2b/3b/a!h#I h~4cab!12I 0~4cab!D J .

~11!

Figure 8 showsg andg8 as functions ofr. As expected,
both quantities decrease monotonically withr. Again, we
also give the results of exhaustive enumerations of a sys
with N528, averaged over 100 samples in order to test

FIG. 7. The paramagnetic entropy~top! and the entropy of
blocked states in the annealed approximation~bottom! for c53 as a
function of the densityr. The data with error bars show the resu
of exhaustive enumerations of a system withN528 averaged over
100 samples. The results for the paramagnetic state are marked
squares.
5-7
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validity of the annealed approximation. The annealed cu
for blocked states and the numerical results show signific
differences. For this reason, we also give the result of
much more involved replica calculation of the quenched
erage@41# as the dashed line, which agrees very well w
the numerical results.

With these results, we may now test the Edwards hypo
esis for this model under the tapping dynamics of Sec. III
If blocked states at the asymptotic density are accessed
equal probability, a plot of the fraction of connected sit
with zero local field versus the density should coincide w
the results of Eq.~9! at the asymptotic density.

The value ofg is a useful quantity to test this hypothes
since as discussed in Sec. IV A, the fraction of spins wit
given local field is intimately related to the fast quenchi
dynamics. Also, as a one-time quantity it may be measu
easily.

In Fig. 9, we show the results of four single runs atT
50.4,0.56,0.7,1.5, plottingg againstr. It shows clearly that
at the asymptotic density, the~quenched! result forg against
r and the results of the tapping dynamics agree to wit
numerical accuracy of the analytical result. We tentativ
conclude that the Edwards hypothesis is valid in this mo
at low tapping intensities and at the asymptotic dens
reached by low-intensity tapping. Further results will be
ported elsewhere@41#.

During the compaction phase, however, the blocked c
figurations accessed dynamically have a lower value t
that of the exponentially dominant blocked configuratio
contributing to Eq.~9!. The result that the blocked configu

FIG. 8. The fraction of connected spins with zero magnetic fi
plotted againstr for c53. The top solid line gives the analytica
result g, Eq. ~9!, for blocked configurations, the bottom solid lin
gives that for the paramagnetic stateg8, Eq. ~10! ~without the
blocking condition!. The results of the quenched average are sho
as a dashed line. The data with error bars show the results o
haustive enumerations of a system withN528 averaged over 100
samples. The results for the paramagnetic state are marked w
square.
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rations accessed dynamically have a lower value ofg than
the typical ones at the same value ofr may be explained to
a certain extent as follows. Configurations with a large va
of g are favored entropically, since spins with zero magne
field may be flipped leaving the configuration blocked~pro-
vided this does not cause the local field of their neighbors
change sign!. In the quenching dynamics, however, there
no such mechanism; sites with zero magnetic field are
ated only by spin flips of neighboring sites.

Nevertheless it is remarkable that for the three lower v
ues ofT ~light tapping!, where the asymptotic density is ver
close tor` , the three traces nearly fall onto a single lin
indicating thatalso during compactionthe blocked configu-
rations are sampled according to a certain ensemble, w
depends on the density only. This occurs even though
plots ofr versus the number of taps do not coincide for the
amplitudes.

VII. CONCLUSION

To conclude, we have presented afinitely connectedspin
model of vibrated granular matter, where we have built up
earlier work @9#. We argue that spin models on rando
graphs may serve as models of granular matter, since
show no symmetries in the way a regular lattice does. T
also arise as the Bethe-lattice approximation to fini
dimensional models. Multispin interactions generically ar
when models of geometric frustrations are transferred to
Bethe lattice. We discuss one of the simplest models of
class, the ferromagnetic three-spin model. Due to comp
tion between satisfying the interactions globally and loca
the model never reaches the ferromagnetic state. This me
nism aims to model the geometric frustration incurred
packings, which arise from maximizing the density locally

d

n
x-

a

FIG. 9. The fractiong of connected sites with zero local mag
netic field during four runs of a system withN510 000,c53 at
T50.4 ~dots!, T50.56 ~pluses!, T50.7 ~crosses!, and T51.5
~circles!. The solid line gives the analytic annealed result of Eq.~9!,
the dashed line gives the corresponding quenched result. The
on the left and right indicate the approximate values forr0 andr` ,
respectively.
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We also discuss the problems incurred by glassy mo
in the context of amplitude cycling. In order to model th
effect of some grains being rendered completely immob
by large intergranular forces, we investigate the effect
constraining ‘‘by hand’’ some of the spins in the context
amplitude cycling experiments. We also test the Edwards
a

s
.
.

,

R

y

. E

v.
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pothesis@41# in the context of our model and conclude that
is valid for the tapping dynamics used.
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