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Glassy dynamics in granular compaction: Sand on random graphs
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We discuss the use of a ferromagnetic spin model on a random graph to model granular compaction. A
multispin interaction is used to capture the competition between local and global satisfaction of constraints
characteristic for geometric frustration. We define an athermal dynamics designed to model repeated taps of a
given strength. Amplitude cycling and the effect of permanently constraining a subset of the spins at a given
amplitude is discussed. Finally we check the validity of Edwards’s hypothesis for the athermal tapping
dynamics.

DOI: 10.1103/PhysRevE.65.031305 PACS nuner45.70—n, 05.20-y, 75.10.Nr

I. INTRODUCTION number of other nodes, thus, from the point of view of con-
nectivity, appearing as a finite-dimensional structure. Each
Granular matter and glasses share a number dbond may link up two sitesa graph or more (a so-called
properties—such as off-equilibrium dynamics, aging, andhypergraph
hysteresis—and analogies between them have [@hgeen Formally, a random graph dfl nodes and average con-
pointed out. However, it was not until the seminal experi-nectivity ¢ is constructed by considering &l(N— 1)/2 pos-
ments of Nowalet al.[2] on granular compaction were car- sible bonds between the nodes and placing a bond on each of
ried out that serious attempts were made to quantify suckhem with probabilityc/N. In other words the connectivity
_analogies. The experiments focus on the compaction behaYnatrix C;; is sparse and has entries(lond presentand 0
ior of a large number of grains subject to repeated tappingno bond, which are independent and identically distributed
and have become a paradigm for subsequent theoreticghyriaples with probabilite/N and 1-¢/N, respectively. The
models. _ . resulting distribution of local connectivities is Poissonian
These models fall into roughly two classes: lattice-basedyjth mean and variance The resulting structure iocally
models[3-5] in a finite-dimensional spacevhich, in gen-  (eelike but has loops of length of order M)( Although
eral, do not admit analytic solutioner mean-field models tnere is no geometric concept of distanGe a finite-
[6,7] (where each site interacts with a large number of othegimensional spagea chemical distance may be defined by

sites. In this paper we discuss how models on randomyetermining the minimum number of steps it takes to go
graphs may be used to describe aspects of the behavior ghm one given point to another.

granular matter, which depend on tfieite connectivity of In a similar fashion, graphs—strictly speaking
the (dis_ordereal grains, while still remaining analytically hypergraphs—with plaguettes connecting three or more
accessible. nodes each may be constructed. Choosiiag=1(0) ran-

The aim of this paper is twofold. We discuss and motivatedom|y with probability Z/N2 (1—2¢/N?) results in a ran-
a simple spin model defined on a random graph introduce@om three-node hypergraph, where the number of plaquettes
as a model of granular compaction[ig]. In this model the  connected to a site is distributed with a Poisson distribution

random close packing density reached asymptotically after gy averagec. An illustration of a part of such a graph is
large number of taps is identified with a dynamic phase trangpown in Fig. 1.

sition. Second, we discuss an athermal dynarf¢9], con-
sisting of alternating periods of thermal dynamics at a certain
temperature, and quenches at zero temperature which take
the system to a metastable state.

Next, the compaction curve of the tapping process will be
discussed and its two main features, the single particle relax-
ation threshold and the random close packing densiyy
namical transitiop will be analyzed in detail. We then
present results of numerical simulations of tapping-
amplitude cycling with a discussion of hysteresis and the
asymptotic state of the model. Finally we investigate the sta-
tistical mechanics of the blocked configurations and discuss
the validity of the so-called Edwards meas{@é

Il. RANDOM GRAPH MODELS AND GRANULAR MEDIA FIG. 1. A part of a random graptstrictly speaking a hyper-
graph with triplets of sites forming plaquettes illustrating its local

Arandom grapti10] consists of a set of nodes and bonds, treelike naturgno planarity or geometric sense of distance are im-
with the bonds connecting each node at random to a finitglied).
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Spin models on random graphs have been investigated for -+
almost 20 year§l1], since they may be considered as being
halfway between infinite-connectivity models and finite- —+ —+-
dimensional models, having to a certain extent the analytic
accessibility of the former within the framework of the
mean-field theory, and yet the finite connectivity of the latter
too. Interest in these models has intensified lately since they
occur in the context of random combinatorial optimization +—+ \
problems[12], and inroads have been made towards their
analytic treatment beyond replica symmeitty,14.

In the context of modeling the compaction of granular +++ -
matter, random graphs are the simplest structures with a fi- £ 2. The phase space of three spins connected by a single
nite number of neighbors. The finite connectivity is a key pjaguette. Configurations of energyl (the plaguette is satisfigd

property, which goes beyond the sim'pl_e fact that the gr_aingre indicated by a black dot, those of energy (the plaquette is
in a granulate are in contact with a finite number of neigh-unsatisfiedi are indicated by a white dot.

boring grains. For instance, kinetic constraints, which are a
prominent feature in many models of granular behajd®&l,  interpreted as the onset long-range order and as being of a
can only be meaningfully defined in models with a finite possibly crystalling20,21 state of the granular medium.
connectivity. Furthermore, cascades found experimentally However two spin flips are required to take a given
during the compaction process may be explained by interaglaquette from one satisfied configuration to another. Thus an
tions between a finite number of neighboring sites, wherenergy barrier has to be crossed in any intermediate step
one local rearrangement sets off another one in its neighbobetween two satisfied configurations as illustrated in Fig. 2.
hood and so of8]. In the context of granular matter, this mechanism aims to
Another reason for the use of random graphs lies in thenodel the situation where compaction follows a temporary
disordered structure of granular matter even at high densitieglilation; for example, a grain could form an unstable
A random graph is the simplest object where a neighborhoo(f'loose”) bridge with other grains before it collapses into an
of each site may be defined, but has no global symmetriegvailable void beneath the latter. This mechanism, by which
like a regular lattice. Additionally, the locally fluctuating an energy barrier has to be crossed in going from one meta-
connectivity may be thought of as modeling the range ofStable state to another, has recently been argued to be an

o———

coordination numbers of the grains6]. important ingredient in models of granular compactiad].
The crucial feature of the model responsible for the slow
Ill. THE MODEL dynamics, however, is the degeneracy of the four configura-

tions of plaguettes withs;s;s,=1 resulting in competition
In the following we consider a three-spin Hamiltonian on between satisfying plaquettdscally and globally. In the
a random hypergraph wheMbinary spinsS;= *+1 interact former case, all states with even parity may be used, result-
in triplets, ing in a large entropy and in the latter, only thet+ + state
may be used. A dynamics based on local quantities will thus
fail to find the magnetized configurations of low energy.
H=—pN= _i<12<k CijkSiS; Sk @ This mechanism has a suggestive analogy in the concept
of geometrical frustration of granular matter if we think of
where the variableC;;, =1 with i<j<k denotes the pres- plaquettes as granular clusters. When grai.ns are shaken, they
ence of a plaquette connecting sife,k and C;;,=0 de- rearrange locally, .but Iocally dense configurations can be
notes its absence. mutually incompatible. Voids may appear between densely
This Hamiltonian has recently been studied on a ra,ﬂ,donﬁ_)acked clusters QUe to _mutually incompatible grain orienta-
graph in the context of satisfiability problems in combinato-toNS between neighboring clusters. The process of compac-
rial optimization[17], on a random graph of fixed connec- tion in gr.anular media consists of a cor_npeptlop between the
tivity [14], and on a two-dimensional triangular lattice compaction oflocal clusters and the minimization of voids
[18,19. It has a trivial ground state where all spins point up9iobally.
and all plaquettes are in the configuratient+ + giving a
contribution of —1 to the energy. Yet, locally, plaquettes of
the type ——+,—+—,+ —— (satisfied plaquett¢salso There have been many kinds of dynamical schemes to
give the same contribution. This results in a competition bemodel the behavior of granular media under tapping. A re-
tween local and global satisfaction of the plaquettes: Locallycurring theme is the alternation of periods of randomly per-
any of the satisfied plaquettes are equivaléimis favoring a  turbing the system and periods in which the system is al-
paramagnetic stateyet globally a ferromagnetic state may lowed to settle into a mechanically stable state. These have
be favored, since there are few configurations satisfying alincluded nonsequential Monte Carlo reorganization schemes
plaquettes, where four configurations++,——+,—+ [22], the ratio of upward to downward mobility of particles
—,+—— occur in equal proportions. Far>c.~2.75[17],  on a latticg 4], or variable rates of absorption and desorption
ground states have a positive magnetization, which may bg23].

A. Modeling tapping
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In the same spirit, we treat each tap as consisting of two ‘
phases. First, during thdilation phase, particles are acceler-
ated and are relatively free to move with respect to each ogs "~
other for some time. In the second phase,dhenchphase,
particles relax until a mechanically stable configuration is &
reached.

As an initial condition we use a configuration obtained by
guenching the system from a configuration where the spin® 0.90
are chosen independently to kel with equal probabilities.

To mimic the action of tapping, we choose the following
dynamics of the spins. The dilation phase is modeled by a
single sequential Monte Carlo sweep of the system at a di-
mensionless temperatufe A site i is chosen at random and 0.85 -
flipped with probability 1 if its spins; is antiparallel to its — —"__
local field h;, with probability exph;/T) if it is not, and , ‘ ‘

with probability 0.5 ifh;=0. This procedure is repeatéd 10
times. Sites with a large absolute value of the local field taps
thus have a low probability of flipping into the direction
a.gamSt the f".ald' Such $p|n§ may be t.hou.ght of as belng04 spins withT=0.4. The data stem from a single run and the fit
highly constrained by their neighbors. This differs somewha{smooth solid ling follows Eq. (2) with parameters..=0.989, p,
from the dilation-phase model i18,9], where a certain frac- =0.843,D=4.716, andr=52.46. The long-dashed lirfeop) indi-

tion of spins is flipped regardless of the value of their localcates the approximate density 0.954 at which the dynamical transi-
field. We claim that our present dynamics is rather morejon occurs, the long-dashed lidiaottom indicates the approximate
realistic in the context of vibrated granular media; if grainsgensity 0.835 at which the fast dynamics stops, the single-particle
are densely packettrongly “bonded” to their neighbols  relaxation threshold.

they are less likely to be displaced during the dilation phase

FIG. 3. Compaction curve at connectivity=3 for a system of

of vibration than grains that are loosely packed. well-known logarithmic law[2]
The quenchphase is modeled by a quench of the system
at T=0, which lasts until the system has reached a blocked p()=pr—(pe—po)/[1+1/D In(1+t/7)], (2

configuration, i.e., each sitehass;=sgn(;) or hj=0. Thus
at the end of each tap the system will be in a blocked conwhich may also be written in the simple form+t(p)/r
figuration. =exgdD(p—po/p-—p)], implying that the dynamics becomes
This dynamics may be thought of as a series of quenchesiow (logarithmig as soon as the density reachgs In this
where the initial condition for each quench is obtained byregime, most spins have a nonzero local field acting on them,
perturbing the result of the previous quench. Itis a simplifiedyhich keeps them fixed in a certain directi26]. The cor-
version, suitable for spin models, of the tapping dynamicgesponding grains are firmly held in place by their neighbors.
used in cooperative Monte Carlo simulations of sphere shak-owever, during the dilation phase some of them have their
ing [22]. In the context of combinatorial optimization it cor- orientation altered, altering the local fields acting on their
responds to the class of random-restart algorithi®g., neighboring grains by a finite amount, which could cause
[24]), which include some of the most efficient algorithms them to flip in turn. The dynamics of the grains with zero

for the solution of optimization problems. local field may alter the local field of their neighbors, and
induce a previously blocked grain to flip. In this waycas-
IV. THE COMPACTION CURVE cade[8] of flips may ensue.

. , - With increasing density, free-energy barriers rise up, caus-
An example of a single run of the system is shown in Fig.jn 4 the dynamics to slow down according to EE). The
3. We can identify three regimes of the dyﬂam'FS- first, 3oint where the height of these barriers scales with the sys-
very fast increase of the density up to a denptfyduring the o gjze marks areaking of the ergodicity of the dynamjcs
first tap, then a slow compaction regime that takes the der5 breakup of the phase space into a large nuntsealing
Sity up to Po s anq finally an asymptoﬂc regime. exponentially with the system sigef disconnected clusters,
In the first regime, all sites orient their spins in parallel 54 5 saturation of the compaction curve. For small driving

with the local field acting on that site. This quench corre-amplitudes, we thus identify the asymptotic dengigndom
sponds to dast dynamics wherebysingle particleslocally  qge packingwith a dynamical phase transitiof7,27—29.

find the orientation maximizing the density leading to the, e following we will examine in detail the SPRT and the
density, pg [25]. In [8] this density was termed thgngle- dynamical transition.

particle relaxation thresholdSPRT).

The second phase of the dynamics consists of removing
some of the remaining frustrated plaquettes and gives a loga-
rithmically slow compactiori2,5] leading from a densityg The first tap is modeled as a quench at zero temperature.
to p... The resulting compaction curve may be fitted to theAt the end of this, each site is connected to méwe as

A. The single-particle relaxation threshold
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many) unfrustrated plaquettes than frustrated ones. The spithat the dynamics is thermal, equilibration times diverge at
of any site where this is not the case would flip under thethe temperature corresponding to the dynamic transition.
zero-temperature dynamics, turning frustrated plaquettes intGooling the system down gradually from high temperatures
unfrustrated ones. The question of the density reached aftervaill also result in the system falling out of equilibrium at the
qguench from random starting conditions is highly nontrivial, dynamical transition temperature. Furthermore, the energy
since its resolution involves the basins of attraction of thewill get stuck at the energy at which the transition occurs.
zero-temperature dynamics. Since this phenomenon is the result of the drastic change

The problem may be illustrated by considering a singlein the geometry of phase space, it is not surprising that we
site i connected to B other sites and subject to the local also find it in the athermal dynamics defined in Sec. Il A.
field hj=1/23;,C;xs;sc. For random initial conditions, the Either gradually decreasing the tapping amplitider tap-
values ofl;=h;s; are binomially distributed with a probabil- ping at a low amplitude for a long time will get the system to
ity of c'(‘,;,_,,) H(1/2)4 if ki—1; is even and zero if it is odd. If approach the densitenergy at which the dynamical transi-

P tion occurs. We thus identify the random close packing limit

in this model with a dynamical phase transition.

To support this picture, we give a simple approximation
for the densityp.. at which the dynamical transition occurs.
Using the replica trick, IiZ=lim__ ,9,2" [32], and standard

[,<<0, zero-temperature dynamics will flip this spin, tliytio
—I;, and turn k;=1;)/2 satisfied(dissatisfied plaquettes
connected to it into dissatisfie@Gatisfied ones. This will
cause thé; of k;=|; neighboring sites to decreaacreasg
by 2. This dynamics stops when all sites hawe0, giving ) ) )
po=1/(3N)Z;1, . manlpula_uons, we obtain for the average of tith power of
This process is made complicated by correlations betweethe partition function of the Hamiltonia(t) averaged over
the local fields of neighboring sites. Neglecting these correthe ensemble of random graphs,
lations we arrive at a simple population model dfunits, N
each with a Poisson distributed valuelgfand a value of; <<zn>>:H J' dc(&)exp’ —N
distributed according to the initial binomial distribution. At o Y0
each step, a randomly chosen element with negétikas its
I; inverted, andk; *=1; randomly chosen elements have their —¢c/3 E c(&)c( ;)C((;)GXF{BE wirlod
values ofl decreasedincreasegl by 2 until I;=0V i. This = a
simplistic model works surprisingly well at low values of the

+c/3

> c(a)in[c(a)]

o

w,T,0

connectivityc (with an error of about 10% up to=6), but G
obviously fails completely at large values ofor in fully
connected models. wherec(o) is an order parameter function defined on the

In principle, the differential equations describing the gomain of the 2 vectorsg®= +1.
population dynamics could be solved analytically. Here we  The general replica-symmetric ansatz is incorporated in
simply report the results for running the population dynamics
numerically withN=10* at c=3. We obtainp,=0.8351),
which is shown as a dotted line in Fig. 3. Note that this S
density is found to be much higher than that of a typical C(U)_f dhP(h) [2 cosliBH)]"
“blocked” configuration withl;=0V i, which is found to be
0.49(see Sec. VI and also the discussiof30]). Despite the _ ) ) ) o
fact that these “blocked” configurations are exponentially TakingP(h)=4&(h) gives the paramagnetic solution, valid in
dominant, the total basin of attraction of the configurations athe high-temperature phase, resulting in a free ené(gy,
po dominates the space of random initial conditions.

Another significant feature of this regime is that a fraction Bf(B)=—cl3In(coshB) +In(2). (4)
of spins is left with local fields exactly equal to zero, which
thus keep changing orientatidi26]. These spins may be , i , )
compared to so-called rattlef81], i.e., grains that change To determine the temperature at WhICh'the dynamics transi-
their orientationwithin well-defined cluster16]. These will  tion occurs, a replica-symmetry breakitBSB) ansatz is
be used as a tool to probe the statistics of blocked configf€auired [27,28. A simple variational ansat17,33,34

eﬁhEaa

rations in Sec. VI. implementing one step of RSB given by
To conclude this section, the SPRT density appears as the
density that is reached dynamically by putting each particle bm
into its locally optimal configuration, as has also been found n/m J dhbGA(hb)eBhb B E o?
in lattice-based modelgs] and simulations of sphere pack- co)=11 amGmbme ®)
ings [20,21], which show both fast and slow dynamics. b=1 '

f dh°G,(hP)[2 costiBhP)]™
B. The dynamic transition

The dynamical transition is marked by the appearance oivhereG,(h) is a Gaussian with zero mean and variance
an exponential number of valleys in the free-energy landgives the free energy subject to the variational an$gg)
scape and thus a breaking of ergodi¢@y—29. In the event =&, ,f1(B,A,m) with
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Bf1(B,A,m)

0.95

J Dz(B\A2z)[2 costif\/Az)]™ Lsinh B\/Az)

J Dz[2 coslig\Az)]™

_ P 09
—1—mc|nU Dz[2 cosm,B\/Kz)]m)
—c/(3m)|n(ffszlDzzDz3[8cosm,8\/Kzl)
0.85
x coshi /A z,) coshi 5/Azs)coshi B)
+8 sintBy/Azy)sint BAz,)sinh( By Azg)sinh( B)1"| ° o5 i '8 ?

: . FIG. 4. The results of ramping the amplitude up and down again

Wwhere D.(Z) denotes the Gau.SSIan measure with zero Mean, \wo different rates, 10 (solid line) per tap and 10° (dashed
and variance 1. The dynamical transition occurs at a tem- . ) .

35 h f(8 A 19 luated am=1 line). The lower rate results in a steeper increase of the density
perature{ 35 \(v_erea[ﬁ (.'B.’ m)]/om evaluated a o during the increase of the amplitudewer branches of solid and
develops a minimum at finitd [27,28. The corresponding dashed lines
density is marked with a horizontal line in Fig. 3 and agrees
well with the asymptotic density reached by the tapping dy-plitude. This behavior has also been observed in other mod-
namics. However, this asympotitic density is not the higheskls[5,36].
density that can be reached without putting the system into |n fact, in the limit of infinitely slow increments df, the

an ordered configuration, however, it is the highest such derirreversible branch would disappear, amavould become a

sity that is reached by a local dynamics. single-valued function of. This would be in direct contra-

diction with the experimental results ¢2], where at low

V. AMPLITUDE CYCLING AND THE STATIONARY amplitudes the Steady-sta.te denSﬂ'anotbe reached with a
STATE sufficiently large number of taps, at least within experimen-

tally realizable times.

The tapping dynamics introduced in Sec. Il A may be This phenomenon may be thought of as follows: Some
used to increase and decrease the tapping amplitude succ@suticles in a granular assembly are so strongly constrained
sively. Thisamplitude cyclings an important protocol in real  that they will never(at least within experimentally realizable
and numerical experiments. The ramp ri2¢is defined as  timeg be moved by taps of a sufficiently low amplitude. In
the ratio(A)/ 7, wherer is the number of taps spent at each the dynamics of our model described thus far, however, sites
amplitudeA, which is changed with an increment 6{A) with a high local field may be flipped at any finite valueTof

after each series of taps. with a correspondinglysmall but finiteprobability, leading
The results of increasing continuously from 0 to 2 and the system eventually tp.. .
back again at two rates 16 and 10°° per tap is shown in To model this effect, it is not sufficient to prevent spins

Fig. 4; here, clearlyr=1, and the ramp rate is in fact just with a large value of the local magnetic field from being
S6(A). As expected, both at high and low cycling rates, theflipped since the dynamics of their neighbors will eventually
density first reaches the SPRY, then increases with in- lead to a reduction of their field, freeing the previously con-
creasing amplitude and time, until it decreases again at larg&trained spins. Instead, we assign to eachi siteeal number
values of T. As the amplitude is decreased, the systenr; between 0 and 1, and during the dilation phase of the
reaches... The part of the curve wher€ is increased for dynamics, we only flip spins at sitésvith r;<T. During the
the first time is conventionallf2] called theirreversible  “quench” phase any spin may be flipped.
branch while the reversible branchrefers to the section In the language of grains; represents the strength with
whereT is subsequently decreased and then increased agawwhich a grain is constrained by its neighbors; sitesch that
However, the similarity of this simple picture with experi- r;>T will be permanently resistant to being displaced at an
mental results of2] is deceptive. From Sec. IV B we know intensity of vibrationT. In a real system, these thresholds
that at fixed, finite but low amplitudes the model eventuallywould be determined by details of the intergrain force net-
reache$... As a result, the branches of increasing amplitudework.
at low T do not coincide for high and low rates of change of The aim of this modification is to check if the scenario of
the amplitude. At low rates of change, the density as a funcSec. IV B survives, since, in principle, it is possible that a
tion of T is higher than at high rates of change. This irreversnew and lower value op.. emerges after the amplitude has
ibility of the so-called reversible branch is thus due to thebeen increased and decreased: At high shaking amplitudes,
system not reaching a steady state at each value of the arftustrated plagquettegclusters might be generated, which

031305-5



JOHANNES BERG AND ANITA MEHTA PHYSICAL REVIEW E65 031305

' ' ' Despite the fact that if5,36] very low ramp rates were used
with large “waiting times” 7 at each tap, this behavior was
not observed; rather the results of all these simulations im-
plied that the asymptotic densify,, would always be ap-
proached in the limit of sufficiently low ramp rates.

One may view thgrandom configuration of the immo-
bile spins at each value df as an additional quenched dis-
order and their effect on neighboring mobile spins as a ran-
dom local field. Presumably the dynamics in the subspace of
the phase space corresponding to the mobile spivith
fixed local fields due to the immobile spinandergoes a
dynamic transition as the corresponding steady-state density
is reached. The result that, is reached decreasingfrom
above even though a finite fraction of spins has been ren-
dered immobile at low temperatures, is quite remarkable: it
: ; : is a testament to the paramagnetic nature of the model at
' T ’ densities below., . In a glassy state, one would expect the

configurations of spins reached at high value§ @ind sub-

FIG. 5. Results of ramping the amplitude up and down again akequently frozen to alter the behavior of the system at lower
two different rates, 10* (solid line) per tap and 10° (dashed ling  values of T. As we are above the dynamical transition, the
strained “by hand” and does not flip. configuration of the immobile spins at each temperature than

o _ ~_ itwould in a glassy phase. However, it needs prolonged ex-
cannot be eliminated at low values of the amplitude, S|m|Iarposure to tapping in order to “feel” the effect of the ran-
to the scenario proposed jB7]. domly “pinned” spins.

Figure 5, where the cycling of Fig. 4 is repeated with the  These results demonstrate a rather fundamental difference
constraining of spins, shows that, remains unaltered. In petween thermal excitations in glassy systems and intensities
fact, Figs. 4 and 5 look remarkably similar. The effect of of mechanical vibration in granular media. In the glassy
constraining some spins at low valuesloémerges when the phase of a system, one would expect the configurations of
ramp rate is decreased substantially, in particular, by allowspins reached at high values of temperature and subsequently
ing the spins to “equilibrate” at each amplitude by choosingfrozen to alter the behavior of the system at lower values of
a larger. In Fig. 6 we thus increase the shaking amplitdde temperature. In granular media, however, it is important to
from 0.2 to 2 in steps of 0.2 after waiting for=10" taps at  |et the systenteach the asymptotic densiat each value of
each amplitude step. This makes sure that a steady state @fe shaking intensityf, in order to even begin to observe the
the density has been reached at each amplitude. We find, ffysteresis that must result when mobile grains become part
this case, that at low amplitudes the immobile spins cause thgf immobile clusterd38], generating a type of “quenched”
system to reach a steady state with a density lower than  disorder at least at low vibrational intensities. The difference
between Figs. 5 and 6 clearly illustrates this. Given that the
experiment$2] were done in such a way that the system was
allowed to reach the asymptotic density at each value of the
tapping amplitude, our results indicate that “jammin@9]
of grains caused by the force network might be responsible
for the fact thatp., is not reached by tapping solely at low
amplitudes.

0.95

0.85

=—-+a increasing T
& --odecreasing T

0.95 |

VI. BLOCKED CONFIGURATIONS
AND THE EDWARDS MEASURE

09 ) . . .
In this section we focus on the statistical mechanics of the

blocked configurations referred to earlier, and use these re-
sults to address the question of ergodicity of the tapping
dynamics. After each tap according to Sec. Il A, the system
is in a blocked configuration, i.e., each sitehas s,
0.85 - . . [ =sgn(;) or h;=0. The Edwards hypothesdjd0] states that
0 0.5 1 15 2 in the steady state along the reversible branch, all mechani-
T cally stable configurations at a given density are equiproba-
FIG. 6. The asymptotic density for tapping amplitudes rangingble. We test this hypothesis for the tapping dynamics of Sec.
from T=0.2 toT=2 in steps of 0.2. The density measured after 10 Il A.
taps at each amplitude and convergence to a steady state each timeWe begin by calculating the average entropy of blocked
was checked. configurations at a given density. In principle, we would
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need to average the logarithm of the number of blocked 0.75 . - - -
states over the ensemble of random graphs; this so-calle
guenched average can be expected to be self-averaging. F
simplicity, we restrict ourselves to the so-called annealed av-

erage and compute
0.5

1 1
SannealebiP) = NIH«MP)»ZSquencheﬁp): N((IH[MP)]»!
(6)
which gives an upper bound to the quenched average. Thi 025

number of blocked configurations{p) may be written eas-
ily as

N(p):l_i[ inl hi;x 5( i ;1/2,-2,;; C”ksjs") % 0.2 0.4 0.6 0.8 1
P
X 0O(h;s;) 5(p—1/[3N]2 hisi), (7) FIG. 7. The paramagnetic entrofgyop) and the entropy of
[ blocked states in the annealed approximatimotton) for c=3 as a

function of the density. The data with error bars show the results
where the Kronecker delt®(x;y) = if x=y and 0 otherwise, of exhaustive enumerations of a system witk 28 averaged over
and ©(x) denotes a discrete Heaviside step function with100 samples. The results for the paramagnetic state are marked with
O(x)=1 if x=0 and 0 otherwise. After using integral rep- squares.

resentations for the Kronecker deltas and standard manipulz\a}ghere for any given value gf, the values ofg and of the
tions, one easily obtains y9 '

order parametera andb are given by the extremization con-
dition in Eq.(8), and where we have subtracted a trivial term
e ¢ corresponding to the fraction of unconnected sites.
Analogously, the fraction of connected sites with zero lo-
_ 3, h3)_ A : o -
Bp+8ci3(a’+b”)—cl3 cal magnetic field at a given densitwithout the blocking
condition is given by

blocked —
Sannealeép) = Ea,b,B

2> (efBa/b)M, (4cab)
h=1

+In
o= lo(4cab)
+2I0(4cab)) , ®) hz,l [(efRa/b)"+ (e ARp/a)"]I(4cab) + 1 y(4cab)
—e ¢ (10

wherel(x) denotes the modified Bessel function of the first o
kind of orderh and € denotes the extremum over the order Where the values af,b, andg follow from extremizing over
parameter. In Fig. 7, the entropy of blocked configurations Sannealed
Sannealelp) 1S shown along with the paramagnetic entropy
given by Eq.(11) below, which is derived by including terms
with negatives;h; . SannealeliP) :Ea,b,ﬁ| —Bp+8ci3(a®+bd) —c/3
These expressions were evaluatedder3 and the results
are shown in Fig. 7. From this data, the lowest density at

which blocked configurations occufSnneaclip) =01 is » (el
h=1

found to bep=0.09, and the density of a randomly chosen +In
blocked configuratiorfthe maximum ofsgpeaichp)) IS p
=0.49.

Similarly, one may calculate the fractianof connected
sites with zero local magnetic field in a blocked configura-

+ (e #Rp/a)"I(4cab) + 2I0(4cab)) ] :
tion. As we will argue below, this is a useful quantity to test

the Edwards hypothesis. From E&) one obtains (11)
lo(4cab) Figure 8 showgy andg’ as functions ofp. As expected,
g=—= -e 5 (9 both quantities decrease monotonically wjh Again, we
> (efalb)M(4cab) + 1 o(4cab) also give the results of exhaustive enumerations of a system
h=1 with N=28, averaged over 100 samples in order to test the
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p

p

) i ) o FIG. 9. The fractiong of connected sites with zero local mag-
FIG. 8. The fraction of connected spins with zero magnetic field,etic field during four runs of a system witi=10000,c=3 at

plotted againsp for c=3. The top solid line gives the analytical T—0 4 (doty, T=0.56 (plusey, T=0.7 (crosse§ and T=1.5
resultg, Eq. (9), for blocked configurations, the bottom solid line (¢jrcleg. The solid line gives the analytic annealed result of @4,

gives that for the paramagnetic stagé, Eq. (10) (without the  the dashed line gives the corresponding quenched result. The lines

blocking condition. The results of the quenched average are showry, the left and right indicate the approximate valuesgipandp.. ,
as a dashed line. The data with error bars show the results of eXagpectively.

haustive enumerations of a system w28 averaged over 100

samples. The results for the paramagnetic state are marked Withrﬁtions accessed dynamically have a lower value tfian

square. the typical ones at the same valuepfay be explained to
a certain extent as follows. Configurations with a large value
of g are favored entropically, since spins with zero magnetic
validity of the annealed approximation. The annealed curvgield may be flipped leaving the configuration blockgo-
for blocked states and the numerical results show significanjided this does not cause the local field of their neighbors to
differences. For this reason, we also give the result of thehange sign In the quenching dynamics, however, there is
much more involved replica calculation of the quenched avno such mechanism; sites with zero magnetic field are cre-
erage[41] as the dashed line, which agrees very well withated only by spin flips of neighboring sites.
the numerical results. Nevertheless it is remarkable that for the three lower val-
With these results, we may now test the Edwards hypothyes ofT (light tapping, where the asymptotic density is very
esis for this model under the tapping dynamics of Sec. lll Aclose top.., the three traces nearly fall onto a single line,
If blocked states at the asymptotic density are accessed Witdicating thatalso during compactionhe blocked configu-
equal probability, a plot of the fraction of connected sitesrations are sampled according to a certain ensemble, which
with zero local field versus the density should coincide Withdepends on the density 0n|y_ This occurs even though the

the results of Eq(9) at the asymptotic density. ~ plots of p versus the number of taps do not coincide for these
The value ofg is a useful quantity to test this hypothesis, amplitudes.

since as discussed in Sec. IV A, the fraction of spins with a
given local field is intimately related to the fast quenching
dynamics. Also, as a one-time quantity it may be measured
easily. To conclude, we have presentediritely connectedpin

In Fig. 9, we show the results of four single runsTat model of vibrated granular matter, where we have built upon
=0.4,0.56,0.7,1.5, plotting againstp. It shows clearly that earlier work [9]. We argue that spin models on random
at the asymptotic density, tHguenchediresult forg against graphs may serve as models of granular matter, since they
p and the results of the tapping dynamics agree to withirshow no symmetries in the way a regular lattice does. They
numerical accuracy of the analytical result. We tentativelyalso arise as the Bethe-lattice approximation to finite-
conclude that the Edwards hypothesis is valid in this modetlimensional models. Multispin interactions generically arise
at low tapping intensities and at the asymptotic densitywhen models of geometric frustrations are transferred to the
reached by low-intensity tapping. Further results will be re-Bethe lattice. We discuss one of the simplest models of this
ported elsewherf41]. class, the ferromagnetic three-spin model. Due to competi-

During the compaction phase, however, the blocked contion between satisfying the interactions globally and locally
figurations accessed dynamically have a lower value thathe model never reaches the ferromagnetic state. This mecha-
that of the exponentially dominant blocked configurationsnism aims to model the geometric frustration incurred by
contributing to Eq.(9). The result that the blocked configu- packings, which arise from maximizing the density locally.

VIl. CONCLUSION

031305-8
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We also discuss the problems incurred by glassy modelpothesig41] in the context of our model and conclude that it
in the context of amplitude cycling. In order to model the is valid for the tapping dynamics used.
effect of some grains being rendered completely immobile
by large intergranular forces, we investigate the effect of AU LS SIS
constraining “by hand” some of the spins in the context of It is a pleasure to thank S. Franz, F. Ricci-Tersenghi, and
amplitude cycling experiments. We also test the Edwards hyR. Zecchina for illuminating discussions.
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